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The preschool years are a time of great advances in children’s numerical thinking, most
notably as they master verbal counting. The present research assessed the relation
between analog magnitude representations and cardinal number knowledge in pre-
school-aged children to ask two questions: (1) Is there a relationship between acuity in
the analog magnitude system and cardinality proficiency? (2) Can evidence of the analog
magnitude system be found within mappings of number words children have not success-
fully mastered? To address the first question, Study 1 asked three- to five-year-old children
to discriminate side-by-side dot arrays with varying differences in numerical ratio, as well
as to complete an assessment of cardinality. Consistent with the analog magnitude system,
children became less accurate at discriminating dot arrays as the ratio between the two
numbers approached one. Further, contrary to prior work with preschoolers, a significant
correlation was found between cardinal number knowledge and non-symbolic numerical
discrimination. Study 2 aimed to look for evidence of the analog magnitude system in map-
pings to the words in preschoolers’ verbal counting list. Based on a modified give-a-num-
ber task (Wynn, 1990, 1992), three- to five-year-old children were asked to give quantities
between 1 and 10 as many times as possible in order to assess analog magnitude variability
within their developing cardinality understanding. In this task, even children who have not
yet induced the cardinality principle showed signs of analog representations in their
understanding of the verbal count list. Implications for the contribution of analog magni-
tude representations towards mastery of the verbal count list are discussed in light of the
present work.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Learning to count meaningfully is a slow and arduous
process for young children, typically taking several years
to master. Around the second birthday children begin to
produce memorized count lists, eventually assigning num-
ber words to a set of items in a stable order with one-to-
one correspondence, one word for each item. Children then
. All rights reserved.
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begin to learn the exact meanings for small numbers, such
that ‘‘one’’ refers to exactly one item, ‘‘two’’ refers to ex-
actly two items, and so on, but only after much experience
and time has passed do children fully grasp the principle of
cardinality, a key step in the acquisition of the counting
principles whereby children understand that each number
in the count list maps to a single quantity (e.g., Fuson,
1988, 1992; Le Corre, Brannon, Van de Walle, & Carey &
Sarnecka, 2006; Schaeffer, Eggleston, & Scott, 1974; Wynn,
1990, 1992).

Ongoing debate in the early number development lit-
erature focuses on understanding the prerequisites neces-
sary for learning to count, and early work by Wynn
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(1992) comments on the importance of such an approach:
‘‘How humans come to learn about the counting system
of their culture is closely related to the nature of our ini-
tial representation of number, because in order to under-
stand counting we must somehow relate it to our prior
number concepts’’ (p. 220). Growing evidence has identi-
fied two basic systems for tracking quantity information
in humans and non-human animals, the object-individua-
tion system and the analog magnitude system (for a re-
view, see Feigenson, Dehaene, & Spelke, 2004), and both
systems have been offered as early foundations of later
numerical concepts, such as counting (e.g., Carey, 2001,
2004; Dehaene, 2001; Gelman & Gallistel, 2004; Le Corre
& Carey, 2007).

The object-individuation system has a limited capacity
and is able to track sets containing up to 3 to 5 items
(e.g., Feigenson, Carey, & Hauser, 2002; Hauser, Carey, &
Hauser, 2000; Mandler & Shebo, 1982; Trick & Pylyshyn,
1994). As described by Carey (2001) and others, in this sys-
tem‘‘. . .number is only implicity encoded,’’ with a generic
placeholder given to each item being tracked. For example,
two items might be represented as ‘item item’, three as
‘item item item’, but there is no inherent coding of quan-
tity relationships in these representations (e.g., Carey,
2001; Le Corre & Carey, 2007).

The analog magnitude system, on the other hand, is a
noisy representational system that explicitly codes for
quantity, with the mental representation of a set of items
proportional to the number of items being represented.
This system treats discrete quantities (e.g., three items)
as analogous to continuous magnitudes (e.g., a line of a cer-
tain length) and due to increasing variability as the quan-
tity represented increases, this system operates as a
function of Weber’s law, whereby two quantities become
more difficult to differentiate as they become closer to-
gether (e.g., Brannon & Terrace, 1998, 2000; Cantlon &
Brannon, 2006; Halberda & Feigenson, 2008; Jordan &
Brannon, 2006; Meck & Church, 1983; Xu & Spelke,
2000). Because the analog magnitude system is powerful
enough to represent all quantities, both large and small,
some researchers posit that this system might play an
important role in the development of more complex
numerical concepts (Dehaene, 1997, 2001; Gallistel & Gel-
man, 1992, 2000; Gelman & Gallistel, 1978, 2004; Wynn,
1992, 1998).

Past research has examined the link between analog
magnitude representations and mastery of the verbal
count list using two approaches: One set of studies
looked for an association between analog magnitude rep-
resentations and counting ability (Huntley-Fenner & Can-
non, 2000; Rousselle, Palmers, & Noel, 2004; Slaughter,
Kamppi, & Paynter, 2006), while the second set of studies
looked for evidence of analog magnitude representations
in children’s mapping of the words in their verbal count
list (Le Corre & Carey, 2007; Sarnecka & Lee, 2009). While
no study has found clear evidence for a relation between
these two numerical skills, closer examination of these
studies reveals some limitations that undermine strong
conclusions about the link (or lack thereof) between ana-
log magnitude representations and verbal counting
proficiency.
Work by Huntley-Fenner and Cannon (2000) and
Slaughter et al. (2006) tested the analog magnitude system
in preschoolers using numerosity comparison tasks and
found no correlations with counting. Researchers asked
children to compare two sets of objects and found that
quantities became harder to discriminate as the ratio be-
tween the objects became more difficult, a phenomenon
known as the distance effect. Importantly, if discriminabil-
ity varied in accord with Weber’s law as expected by the
analog magnitude system, performance would decline as
a function of ratio, not absolute set size, and this was not
the case in either study: In both studies, children showed
significantly decreasing accuracy as the comparison num-
bers increased. For example, Huntley-Fenner and Cannon
(2000) found that children were less accurate at discrimi-
nating 5 vs. 10 than 3 vs. 6; Slaughter et al. (2006) have
demonstrated that younger children were less accurate at
discriminating 10 vs. 20 than 3 vs. 6. If children’s perfor-
mance was based on ratio, as expected by the analog mag-
nitude system, this pattern is not only unpredicted, but
also inconsistent with both infant work (e.g., Xu & Spelke,
2000) and adult work (e.g., Barth, Kanwisher, & Spelke,
2003).

Huntley-Fenner and Cannon (2000) and Slaughter et al.
(2006) concurrently tested children’s counting proficiency,
but these tasks also contained limitations. Both studies
gave children sets of varying sizes and asked children
‘‘How many x are there.’’ Huntley-Fenner and Cannon
(2000) tested children’s ability to correctly count sets of
up to 15 blocks; Slaughter et al. (2006) tested their ability
to correctly count sets of up to 30 stickers. In both cases,
the highest correct tag was taken as a measure of the
child’s counting ability. No associations were found be-
tween this tag and performance on the magnitude compar-
ison tasks, and these researchers argued that magnitude-
based discriminations are, therefore, independent of verbal
counting ability in preschoolers.

Yet based on the research of Fuson and others (e.g., Fu-
son, 1988; Fuson & Hall, 1983; Schaeffer et al., 1974;
Wynn, 1990, 1992), we know that verbal counting devel-
ops over a protracted period of time that culminates in
the understanding of cardinality. The ability to reliably re-
port the final tag of a count in answer to the question ‘‘How
many?’’ is an earlier achievement which may not reflect
the heart of children’s numerical representations, and need
not reflect an understanding of cardinality at all.

Rousselle et al. (2004) attempted to examine the rela-
tion between analog magnitude representations and
counting skills, including cardinality. This work used a
magnitude comparison task with various controls for con-
tinuous variables (e.g., surface area, density), and perfor-
mance on a test of cardinal number knowledge (e.g.,
children asked to ‘‘give the experimenter x items’’). The re-
sults were varied. Some evidence did point to an associa-
tion between magnitude comparison skills and
cardinality understanding (i.e., children with some number
knowledge were better at magnitude comparisons than
children with no number knowledge), but both the magni-
tude comparison task and the cardinality task leave open
methodological questions which limit conclusions from
this work. First, the magnitude comparison task found no
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evidence that 3-year-olds used the analog system for dis-
crimination when surface area was controlled, a finding
not supported by other work with this age group (e.g.,
Cantlon, Safford, & Brannon, 2010; Halberda & Feigenson,
2008). Second, the validity of the cardinality task used is
unclear, as the cardinality of ‘‘one’’ was never assessed,
and children appeared to answer each cardinality request
only once, making this measure less reliable than previous
cardinality assessments (see Wynn, 1990, 1992).

More recent work by Le Corre and Carey (2007) took a
more direct look at the relation between analog magnitude
representations and the words in the verbal count list in
preschoolers. Three- and 4-year-olds were asked to pro-
duce estimates of quickly presented dot arrays ranging
from 1–10 to test for the analog system, and performed
Wynn’s (1990, 1992) give-a-number task to assess cardinal
number knowledge for the numbers 1–6. These research-
ers hypothesized that if analog magnitude representations
play a role in helping children understand the meanings of
the words in their count list, preschoolers who had not yet
mastered cardinality would show evidence of the analog
magnitude system during the dot estimation task (i.e.,
numerical estimates would become noisier as the number
of items increased, known as the size effect) for numbers
above their level of cardinality understanding. Through a
series of analyses, this study found that children who had
partial knowledge of the cardinality principle (classified
as 1-, 2-, 3-, and 4-knowers by the authors) showed no evi-
dence of increasing numerical estimates for numbers in
their count list, therefore, showing no understanding that
larger quantities are represented by larger number words
(Le Corre & Carey, 2007). A group of children who had mas-
tered the cardinality principle did show this mapping of
larger number words onto larger quantities, and Le Corre
and Carey (2007) concluded that children only map the
meaning of the words in their count list to the analog mag-
nitude system after they have induced the cardinality prin-
ciple. Therefore, they reasoned, it must not be involved in
the acquisition of the counting principles.

One important methodological limitation from the
work of Le Corre and Carey (2007) comes from the use of
an estimation task which required verbal responses in chil-
dren, as it is possible that the mapping of analog magni-
tude representations to words in a child’s count list could
be better measured using a verbal comprehension task that
induced enough trials to measure variability. Work by Sar-
necka and Lee (2009) took a step towards such an ap-
proach, examining children’s errors during Wynn’s (1990,
1992) give-a-number task, a measure requiring only verbal
comprehension. This work found no evidence of increas-
ingly variable estimates in the errors children made during
this task, but several limitations make this result inconclu-
sive with regard to the analog magnitude system. First, the
datasets re-analyzed by Sarnecka and Lee (2009) asked
children to respond to an incomplete set of values between
1–10, and only a subset of children were ever asked to
give-a-number for values beyond four or five. This prior
work, therefore, did not have sufficient range and repeti-
tion to systematically evaluate how variability in re-
sponses on a cardinality task might relate to the analog
magnitude system. Further, traditional work examining re-
sponse variability for evidence of the analog magnitude
system analyzes an individual’s mean response, standard
deviation of that response, and coefficient of variation
(COV; ratio of standard deviation to mean estimate), none
of which were calculated by Sarnecka and Lee (2009).

A recent study by Opfer, Thompson, and Furlong (2010)
had preschoolers perform a variation of the give-a-number
task, asking once for each of the numbers 1–9. This work
found evidence of analog magnitude representations in
the mappings of these words to the verbal count list, with
both mean response and standard deviation increasing as
the number requested increases. However, because the
aim of Opfer et al. (2010) was to examine groups of pre-
schoolers who had or had not made spatial-numeric map-
pings, testing each individual participant’s cardinality
proficiency was beyond the scope of that study, and there-
fore, it cannot be ruled out that some of the children who
showed this mapping to the number words may have al-
ready induced the cardinality principle, consistent with
the findings of Le Corre and Carey (2007).

In summary, prior studies examining the role analog
magnitude representations in mastery of the verbal count
list have found no relation between these skills (or a lim-
ited one, as in the case of Rousselle et al., 2004). Studies
which looked for a correlation between these skills were
limited by poor measures of both the analog magnitude
system and counting proficiency (Huntley-Fenner & Can-
non, 2000; Rousselle et al., 2004; Slaughter et al., 2006),
and studies which looked for evidence of mappings from
the analog magnitude system to the verbal count list were
limited because of verbal task demands imposed on pre-
school participants (Le Corre & Carey, 2007) and insuffi-
cient design to systematically measure the analog system
in estimations (Sarnecka & Lee, 2009).

The present set of studies aimed to first assess the cor-
relation between the analog magnitude system in pre-
schoolers and their cardinality understanding, and second
to look for evidence of analog magnitude representations
within preschoolers’ mappings of the words in their count
list. In Study 1, preschoolers performed a numerosity com-
parison task and a test of cardinality, and the association
was examined. Study 2 then expanded the test of cardinal-
ity used in Study 1 and provided an opportunity for chil-
dren to produce enough errors for analysis of the COV
directly from the measure used to assess the cardinality
principle, a measure that required only verbal comprehen-
sion of the number words, as opposed to verbal
production.
2. Study 1

2.1. Method

2.1.1. Participants
Forty-eight 3- to 5-year-old children (mean age 3;11,

range 3;0 to 5;3) participated. Children were tested either
at a local preschool or a university child development lab-
oratory. Twenty-eight additional children were invited to
participate, but were ultimately excluded from the study
for being unable to complete the numerical comparison



Fig. 1. Sample stimuli used in Study 1. Dot arrays were presented side-
by-side and children were asked to point to the side with more dots.
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task, either because they never fully understood the
instructions (8), they stopped following the instructions
midway (16), or they failed to perform the cardinality task
(4). One child had participated in an earlier version of the
study and was also excluded.

2.1.2. Design
Each child participated in two tasks, a numerosity com-

parison task and a cardinality task.
The numerosity comparison task was designed with

two within-subjects variables: number ratio and set size.
Number ratio had three levels: 1:2, 2:3, and 3:4. For each
number ratio tested, there were four set sizes tested. For
example, the number ratio 1:2 had the following four dot
array comparisons: 1 vs. 2, 4 vs. 8, 15 vs. 30, and 25 vs.
50. Table 1 shows all comparisons used.

Mastery of the verbal count list was assessed in the
same session with a test of cardinality in which children
were asked to put a certain number of objects into a box,
based on Wynn’s give-a-number task (1990, 1992).

2.1.3. Materials
The stimuli used for the numerosity comparison task

were dot arrays ranging in numbers from 1–50. Paired ar-
rays appeared on a Macintosh PowerBook running the pro-
gram PsyScope. A trial presentation consisted of two
pictures side-by-side, each measuring 5.25 in. � 6.5 in.
and separated by a distance of 0.5 in. Each picture con-
tained black dots randomly dispersed over a 10 � 13 unit
grid on a white background.

Past studies have pointed to area as a highly salient cue
for quantity discrimination (e.g., Feigenson, Carey, &
Spelke, 2002), and work with preschoolers by Rousselle
et al. (2004) found that children were unable to success-
fully compare quantities when the displays were con-
trolled for surface area (and children had no such
difficulty for stimuli controlled for density, contour length,
and item size). In order to prevent preschoolers from bas-
ing their judgments on the continuous dimension of area
rather than number, the dot arrays were matched for total
filled area. For example, if the comparison was 25 vs. 50
dots, one picture would contain 25 dots while the other
contained 50 dots which were half as large. Fig. 1 shows
a sample stimulus pair.

For the cardinality task, the stimuli included a card-
board box and 12 plastic fish.

2.1.4. Procedure
Each child sat at a table in front of the laptop while the

experimenter sat next to the child. Before the first practice
Table 1
The 12 numerosity comparisons used in Study 1; each ratio tested had four
set sizes.

Ratio Set size

1 2 3 4

1:2 1 vs. 2 4 vs. 8 15 vs. 30 25 vs. 50
2:3 2 vs. 3 6 vs. 9 16 vs. 24 30 vs. 45
3:4 3 vs. 4 9 vs. 12 18 vs. 24 30 vs. 40
trial was presented, the experimenter explained the fol-
lowing as the children looked at a black screen with a small
white crosshair in the center: ‘‘I’m going to show you two
pictures with dots on them (gesturing to the corresponding
locations on the laptop screen), and I want you to point to
the side that has more dots.’’ The experimenter pressed the
spacebar to start a trial. Children received two practice tri-
als with pairs remaining on the screen for five seconds. The
first pair compared 1 vs. 2 and the second pair compared 6
vs. 12. After five seconds, the pair of arrays disappeared
and the screen went black. If the child pointed to the left,
the experimenter pressed the ‘‘s’’ key; if the child pointed
to the right, the experimenter pressed the ‘‘d’’ key. The fix-
ation point then reappeared. Children were told whether
they were correct or incorrect.

After completing these ‘‘slow’’ practice trials, children
were told: ‘‘Now we are going to do the same thing, but
this time the pictures are going to come up and go away
really fast (gesturing as above), but I want you to do the
same thing and point to the side that has more dots.’’ Four
‘‘fast’’ practice trials with a shortened display time of
750 ms were then presented to the child. This brief presen-
tation time aimed to limit alternative counting-related
strategies. Two of these trials were again 1 vs. 2 and the
other two trials were 6 vs. 12. The higher number appeared
one time on the right and one time on the left for each of
these pairs.

After finishing all six practice trials, test trials began.
Each child received two blocks of 12 trials in one of four or-
ders, with a break in between the two blocks.

During the break in the numerosity comparison task be-
tween the two blocks, the children participated in the first
half of the cardinality task. For this, the twelve fish were
placed on the table. The child was then asked ‘‘Can you
put x fish in the box?’’ where x varied from 1 to 7, in a ran-
domized order until all seven cardinalities were tested.
Neutral feedback was given after each trial.

Once all seven cardinalities were completed, children
were reminded of the rules and objective of the numerosity
comparison game and given the second block of 12 trials.
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After completing these trials, children were asked to
perform the cardinality task a second time, placing each
set size from 1 to 7 into the box, this time in a different
randomized order.

2.2. Results

2.2.1. Numerosity comparison task
Children’s accuracy in choosing the larger of the two

arrays was calculated. An omnibus analysis of variance
(ANOVA) revealed no effects of gender, order, or age.
Therefore, subsequent analyses were collapsed over these
variables.

The first thing to note is that children’s performance on
this task was significantly better than that predicted by
chance (50%). They averaged 63% accuracy in identifying
which side had more dots (SD = 13%), t(47) = 6.682,
p < .0001. When broken down into each of the three indi-
vidual ratio levels as well as the four set size levels, perfor-
mance remained above chance (all t’s > 2.9 and all
p’s < .005).

To test whether children’s performance decreased as
the ratio between the number pairs approached one, we
performed a 3 � 4 repeated-measures analysis of variance
(ANOVA) with ratio (1:2, 2:3, 3:4), and set size (level 1, 2, 3,
4) as variables. We found that children’s performance var-
ied significantly with ratio, F(2, 94) = 9.090, p < .0001,
eta = .162 (see Fig. 2). Contrast analyses revealed that chil-
dren’s accuracy was significantly higher at the 1:2 ratio
than the 2:3 ratio (F(1, 47) = 12.864, p < .001, eta = .215),
but that children’s accuracy at the 2:3 and 3:4 ratios did
not differ. No main effect of set size or interaction between
number ratio and set size was observed (p’s > .20). Fig. 3
shows accuracy for each number ratio across the four set
sizes.

2.2.2. Cardinality task
Three scores were derived from children’s cardinality

performances; overall accuracy, the highest correct re-
sponse made in either of the two blocks, and the highest
correct response made in both blocks. A highest correct re-
sponse did not guarantee that the child made no mistakes
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Fig. 2. Performance on the numerosity comparison task across number
ratio. A main effect of number ratio was found (F(2, 94) = 9.090,
p < .0001), with higher accuracy for comparisons in a 1:2 (.5) ratio than
a 2:3 (.67) or 3:4 (.75) number ratio. No other effects were found.
Accuracy for each number ratio level was significantly different from
chance (50%) (all t’s > 3.7, all p’s < .001).
at lower cardinalities, as in the case of a child whose high-
est response on both blocks was ‘‘7’’, yet overall only
achieved 93% accuracy.

2.2.2.1. Accuracy. Overall children were correct on 72 %
(SD = 29%) of the cardinality trials, with a minimum of
14% and a maximum of 100%. Fifteen children got all 14 tri-
als correct.

2.2.2.2. Single highest correct response. The average single
highest correct response was 5.4 (SD = 2.03). Two children
had a highest response of 1, six children had a highest re-
sponse of 2, two children reached 3 at least once, four chil-
dren reached 4, seven children reached 5, two children
reached 6, and 25 children reached 7.

2.2.2.3. Consistently highest correct response. Six children
performed only one round of the cardinality task and are
not included in this analysis. For the remaining 42 chil-
dren, the average highest correct response achieved on
both trials was 4.7 (SD = 2.23). Three children correctly re-
sponded with 1 twice. Eight children correctly responded
with 2 twice. Four children responded 3 twice. Three chil-
dren responded 4 twice. Four children responded 5 twice.
Four children responded 6 twice, and sixteen children cor-
rectly responded 7 on both trials.

As expected, the three scores were all highly correlated
with each other, with all r2 values greater than .9. All three
were also correlated with age, with r2 between .62 and .74.

2.2.3. Comparisons across number tasks
In order to test whether there is an association between

precision in a child’s analog magnitude system and their
acquisition of verbal counting skills, we calculated correla-
tions between children’s overall accuracy on the magni-
tude comparison task and the three measures of
cardinality proficiency After partialling out the influence
of age, accuracy on the magnitude comparison task signif-
icantly correlated with overall accuracy on the cardinality
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task (see Fig. 4), highest correct cardinality response, and
highest correct cardinality twice (all r2’s > .40, all p’s < .01).

2.2.4. Summary
During the numerosity comparison task used in the

present study, evidence of the analog magnitude system
was found, with accuracy modulated by the ratio between
the quantities being compared. Importantly, this held true
across set size. Although past work (e.g., Halberda & Fei-
genson, 2008) finds evidence of better discrimination of
items in a 2:3 ratio as compared to a 3:4 ratio in children
at this age, the brief presentation time (750 ms) used in
the present experiment (as compared to 1200–2500 ms
in Halberda & Feigenson) made it difficult to replicate this
finding.

This measure of the analog magnitude system was then
correlated with cardinal number knowledge, showing a
significant relation between performance on these two
tasks, contrary to prior work with preschoolers. This corre-
lation contributes to understanding how the analog magni-
tude system might underlie mastery of the verbal count
list, though it is important to recognize the possibility that
a third variable could be mediating this relationship. Fur-
ther, it is important to note that the measure of the analog
magnitude system of number representation was limited
by the choice to control stimulus displays only on the con-
tinuous dimension of area. Children could have adopted a
strategy of choosing the side with smaller dots as the more
numerous side in order to show evidence of the distance
effect, and future work exploring the analog magnitude
system will control for such a possibility.
3. Study 2

In Study 1 we found a significant positive association
between preschooler’s analog magnitude representations
and cardinality proficiency, consistent with theories
emphasizing the role of analog magnitude representations
in the development of more advanced numerical concepts
(e.g., Dehaene, 1997, 2001; Gallistel & Gelman, 1992, 2000;
Gelman & Gallistel, 1978, 2004; Wynn, 1992, 1998). Specif-
ically, the more accurate a child was at discriminating dot
arrays varying in ratio, the more proficient their cardinal
number knowledge was, independent of age.

This correlation is an important first step in assessing
the association between cardinality development and the
analog magnitude system, but like prior work, this result
provides only an indirect link between these skills. How-
ever, further examination of the modified version of
Wynn’s (1990, 1992) give-a-number cardinality task used
in Study 1 revealed the potential for a more direct look
at the relation between these numerical abilities. In prior
research, the give-a-number task has been used primarily
to determine cardinal number knowledge in preschoolers
and to compare this to performance on other tasks (e.g.,
Condry & Spelke, 2008; Le Corre et al., 2006; Le Corre &
Carey, 2007; Wynn, 1990, 1992). Using the titration meth-
od developed by Wynn (1990), children are first asked to
give 1 item, and if successful they are then asked for 2, then
3, and so on (with a typical limit at 6 items). If children fail
to give the correct response for any number, x, they are
then asked again for x � 1, and if successful at x � 1, will
be asked for x again. The number at which children are at
least 66% accurate is then referred to as their ‘‘knower-le-
vel.’’ Children who are 66% accurate for all quantities re-
quested, are said to have induced the cardinality
principle (‘‘CP-knowers’’).

A preliminary analysis of the variability in responses
produced by children in Study 1 (and critical review of
the work of Sarnecka & Lee, 2009) suggested that more tri-
als across a wider range of numbers could potentially in-
duce sufficient errors for calculating the role of the
analog system in a cardinality task. Specifically, with in-
creased variability, it would be possible to calculate the
COV, a measure that has been used during estimation tasks
with adults and older children to look for evidence of the
analog magnitude system (e.g., Cordes, Gallistel, Gelman,
& Whalen, 2001; Huntley-Fenner, 2001; Whalen, Gallistel,
& Gelman, 1999).

The present study (Study 2) extended the cardinality
task of Study 1 in order to investigate the variability in
children’s responses when prompted to give 1–10 items
repeatedly. Using the standard deviation and mean re-
sponse for a given target, the goal was to look at COV
scores for children who had not yet mastered cardinality.
We predicted that, if the analog magnitude system contrib-
utes to cardinality development, children who have not yet
induced the cardinality principle will show evidence of
scalar variability for cardinalities they have not fully mas-
tered, with a constant ratio between the standard devia-
tion and mean response for each number requested.
Importantly, this task required no verbal responses from
children, minimizing task demands and capturing a more
naturalistic response to requests for numbers outside of
their cardinality proficiency.

3.1. Method

3.1.1. Participants
Thirty-nine 3- to 5-year-old children (mean age 4;1,

range 3;0 to 5;4) participated. Children were tested at a
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university child development laboratory. Thirty-seven
additional children were invited to participate, but were
ultimately excluded from the study for performing above
66% accuracy when probed for 10 items and/or counting
aloud during responses (21), failing to perform a minimum
number of trials (15), or never fully understanding the
instructions due to English as a second language (1). One
child failed to respond independently during the task, in-
stead attempting to rely on experimenter cues, and was,
therefore, excluded as well.
3.1.2. Design
Children performed a cardinality task similar to that

used in Study 1. As compared to Study 1, this test of cardi-
nality extended the range of quantities tested, the items
used, and the number of repetitions requested.
3.1.3. Materials
The materials for this task included seven unique sets of

toys (e.g., 30 small orange fish; see Table A in Appendix A
for a list of stimuli used) and a set of plastic boxes.
3.1.4. Procedure
Each child sat at a small table across from the experi-

menter. The child was told that he/she would be playing
games with some different toys. The first set of stimuli, al-
ways consisting of 30 small orange fish, was then emptied
into a pile in front of the child. A plastic container was then
placed on the table, and the child was told ‘‘This is a pond
where the fish like to go swimming.’’ The child was asked
‘‘Can you put x fish in the pond?’’ where x varied from 1 to
10 in a randomized order until all ten cardinalities were
tested. After these ten trials, children were presented with
a new set of stimuli and once again asked to put varying
quantities of items into a container. The order of subse-
quent sets of stimuli followed the same order for all chil-
dren, while the order of the requested numbers (1–10)
was randomized differently for each set. Children contin-
ued to receive new sets of stimuli for this cardinality task
until they expressed a verbal interest in stopping or no
longer would respond to the experimenter’s requests. Only
neutral feedback was given throughout the task.
Table 2
Summary of children separated by proficiency level (cardinality level with 66% ac

Proficiency level (p) Number of children (n) Age (SD) Card

Num

One 2 44.50 (0.71) 37.5
Two 7 44.71 (6.02) 48.6
Three 9 44.44 (5.75) 58.3
Four 6 50.33 (8.31) 60.0
Five 7 54.86 (7.01) 60.0
Six 3 48.67 (3.06) 60.0
Seven 3 54.00 (8.00) 56.7
Eight 1 47.00 62.0
Nine 1 52.00 30.0
3.2. Results

For all children in the present study, average response
to each target request was calculated. On a subset of trials,
preschoolers responded by placing all items in the appro-
priate container, an action that could be interpreted in sev-
eral ways. This response could represent an estimation of
‘‘a lot’’ for numbers deemed large, or it could represent a
perseverative error, whereby children begin putting in
‘‘x’’ items one-by-one and do not stop until there are no
more items left. Because of the difficulty in interpreting
‘‘all’’ responses, data were analyzed both with and without
such trials. In the present paper, analyses are presented
without ‘‘all’’ trials; however, Figs. C1–C3 in Appendix C
present findings obtained with the inclusion of trials where
children responded with ‘‘all.’’

While past work using the give-a-number task typically
identifies 4–5 categories of cardinality understanding
using the titration method (e.g., 1-, 2-, 3-, 4-, and CP-
knower), proficiency in the present study was operational-
ized as the highest number at which a child was 66%
accurate. Table 2 displays a summary of the children in
Study 2 broken down by proficiency level (p), illustrating
the number of children at a given level (n), as well as mean
values for age in months, number of trials, overall accuracy
during the task, and the highest correct response overall.

3.2.1. Scalar variability in children with partial cardinal
number knowledge

Past research using the give-a-number task identifies
children as CP-knowers if they respond to prompts of five
or more items with 66% accuracy (e.g., Le Corre & Carey,
2007; Le Corre et al., 2006; Sarnecka & Lee, 2009). Thus,
in order to be conservative, only the performance of chil-
dren below a proficiency level of five was analyzed to
determine whether children without knowledge of the car-
dinality principle show systematic variability within their
cardinality responses. The following analyses examine
the 24 children with proficiency levels between 1 and 4.

Three pieces of evidence are used to document a size
effect in an estimation task: (1) mean estimates that
increase as the target value increases; (2) standard devia-
tions of mean estimates that increase as the target value
increases; and (3) a constant COV. Fig. 5 illustrates that
across all children with proficiency levels 1–4, as the
curacy).

inality task

ber of trials Overall accuracy (SD) Highest correct response

0.28 (0.10) 9.50
0.33 (0.03) 7.29
0.37 (0.04) 7.00
0.55 (0.09) 8.83
0.61 (0.06) 9.71
0.57 (0.03) 9.67
0.73 (0.07) 10.00
0.69 10.00
0.88 10.00
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Fig. 5. Mean number of items given collapsed across values beyond a
child’s proficiency level for requests of 3–10 items. The average slope of
the mean response for items beyond a child’s proficiency level is positive
and significantly different from 0, p = 0.001.
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Fig. 6. Standard deviation collapsed across values beyond a child’s
proficiency level for requests of 3–10 items. The average slope of the
standard deviation of responses for items beyond a child’s proficiency
level is positive and marginally different from 0, p = 0.06.
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values at and below proficiency also show a slope no different from 0,
p > 0.50.
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number requested increased, the number given by the
child increased as well. For each child, the slope of mean
response to requests beyond their proficiency level was
calculated, and the mean slope was tested against a line
with a slope of 0; the mean slope of 0.61 (0.75) was signif-
icantly different from 0, t(23) = 4.03, p = 0.001. Further,
each child’s slope of the standard deviations for responses
to requests beyond their proficiency level was also calcu-
lated, and the mean slope was tested against a line with a
slope of 0. Fig. 6 shows the mean slope of 0.17 (0.41), a
value that was marginally different from 0, t(23) = 2.00
p = 0.057.

For children with proficiency levels between 1 and 4,
analyses of mean response and standard deviation show
both values increasing as the number of items requested
increases. In the same group of children, the mean re-
sponse and standard deviation values were next used to
calculate a set of COV values (SD/mean) for numbers be-
low, at, and beyond a child’s proficiency level, p (see
Fig. 7). Since standard deviation values at and below p
are close to 0 (due to minimal errors within a child’s profi-
ciency level), COV values at and below p are also expected
to be close to 0, as they are calculated using SD as the
numerator. In the present sample, the average COV value
for children at and below p is 0.05. Further, for each of
the 22 2-, 3- and 4-proficient children, the slope of COV
values below and at proficiency level was calculated (the
two 1-proficient children could not have a slope calculated,
as they only had a single COV value at p). The average slope
of 0.017 was found not to be significantly different from a
line of slope 0, t(21) = 0.65, p = 0.52.

Beyond p, COV values should also be constant with a
slope near 0 if children show proportionate increases in
their standard deviations and mean responses as the target
number increases. The slope for COV values beyond p (the
line formed by p + 1, p + 2, p + 3, p + 4, p + 5, and p + 6) was
tested against a line with slope of 0, and the mean slope of
�0.002 (0.04) was not significantly different from 0,
t(23) = �0.30, p = 0.77. Further, individual subjects show
slopes with an absolute value ranging from 0.008 to
0.075, illustrating that a constant slope of COV values
beyond p is close to 0 for all subjects. These constant
COV values found beyond p provide strong evidence of
scalar variability in children’s estimates of values beyond
their proficiency level (see Fig. B and Table B in Appendix
B for graphs and table of COV for proficiency levels 2, 3,
and 4 individually).
3.2.2. Individual participant’s data
Past work has suggested that COV values differ between

adults and children, being in the range of .12 to .19 for
adults (Whalen et al., 1999) and .11 to .37 for 5–7-year-
olds (Huntley-Fenner, 2001). Whether this difference is
due to age per se or more number-specific mechanisms is
unclear. In Study 1, a significant positive correlation was
found between precision in the analog magnitude system
as measured by a numerosity comparison task and pre-
schoolers’ cardinality proficiency, independent of age. In
the present study, a parallel analysis examined the associ-
ations between age, cardinality proficiency, and mappings
of the analog magnitude system to count words beyond a
child’s proficiency level, p.

An average COV value was calculated for each of the 39
participants using the COV scores for all numbers beyond
p. In the present study, preschoolers showed a wide range
of COV values, varying from .10 to .69 (M = .35, SD = .14).
Based on past work, lower COV values in the present anal-
ysis can be taken as a proxy for higher precision in the
mappings of the analog magnitude system to the verbal
count list.
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Fig. 8. After partialling out the influence of a child’s age, a significant
negative correlation is found between a child’s cardinality proficiency
level and their average COV for values beyond their proficiency level
(p < 0.001).
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Initial analyses showed significant negative correlations
between average COV and age, r2 = �0.45, p < .005, as well
as average COV and proficiency level, r2 = �0.65, p < 0.001.
Importantly, the correlation between average COV and
proficiency level remained significant after partialling out
the influence of age, r2 = �0.57, p < 0.001; however, after
partialling out proficiency level, the correlation between
average COV and age was no longer significant,
r2 = �0.26, p = 0.12. These results show that independent
of age, higher precision in the mappings of the analog mag-
nitude system to the verbal count list is significantly corre-
lated with cardinality proficiency (see Fig. 8).

4. General discussion

4.1. Summary of results

Study 1 tested preschoolers on a non-symbolic num-
erosity comparison task and a cardinality assessment
based on Wynn’s give-a-number task (1990, 1992).
Strong evidence of the distance effect was found in the
numerosity comparison task, with children becoming less
accurate to report which side had more dots as the ratio
between the two arrays approached 1. The relation
between performance on the numerosity comparison
task and children’s performance on a test of cardinality
was found to be significantly correlated, independent of
age, providing evidence that these number skills are
related, in contrast to the conclusions of prior work in
this area (e.g., Huntley-Fenner & Cannon, 2000; Le Corre
& Carey, 2007; Slaughter et al., 2006). Limitations to the
conclusions from this correlational finding come from
the possibility of mediation by a third variable other
than age.

Extending the findings of Study 1, Study 2 used multi-
ple repeated trials within a cardinality task to generate
enough errors to test for variability in mappings of words
in the verbal count list in children who have not mastered
the cardinality principle. For children who reached their
highest cardinality proficiency (66% accuracy) for 1, 2, 3,
or 4 items, cardinality responses to values beyond this
proficiency level showed systematic variability through a
constant COV, with mean response and standard deviation
increasing proportionally as the target number increased.
Thus, Study 2 provides the first evidence that children
who have not mastered the cardinal word principle
(‘‘non-CP-knowers’’) show the signatures of scalar vari-
ability directly within their mappings of number words
beyond their proficiency level.

Further, parallel to Study 1, Study 2 found a significant
correlation between a child’s average COV score beyond p,
taken as a proxy for precision in the mapping of analog
magnitude representations to the verbal count list, and
cardinality proficiency, independent of age. Prior work
with infants and children has found that the precision
of these representations, as measured in an independent
task, increases alongside increases in a child’s age (e.g.,
Halberda & Feigenson, 2008; Huntley-Fenner, 2001; Lip-
ton & Spelke, 2003; Xu & Arriaga, 2007), but the present
work reveals a significant association between the preci-
sion in the analog magnitude system mappings to the
verbal count list and cardinality proficiency, independent
of a child’s age.

Study 2 modified the titration method typically used
with Wynn’s (1990, 1992) give-a-number task by
requesting the numbers 1–10 in randomized order. This
method undoubtedly increased the task demands on the
child and was done deliberately to give children the
opportunity to make errors across the entire range of
numbers. One consequence of this strategy, however,
was to identify individual children who almost certainly
had induced the cardinality principle, yet produced errors
at the higher numbers (thus appearing as 5-, 6-, 7-, 8- or
9-proficient). Because the logic of our argument depends
on the variability produced by children who have not yet
induced the cardinality principle, and because others
have never identified non-CP-knowers with such high
levels of proficiency (Le Corre & Carey, 2007; Wynn,
1990, 1992), we conservatively excluded these children
from our analysis. Study 2 found clear evidence of the
analog magnitude system in mappings of large number
words in 1- to 4-proficient children, with increasing esti-
mates as the number of items requested increased, as
well as a constant COV for numbers beyond p (see also
Appendix B).

4.2. Analog magnitude representations are mapped onto large
number words before children master the cardinality principle

The acquisition of the counting principles occurs over
a protracted period of time in preschool-aged children,
with the concept of cardinality representing a key insight
at the heart of this acquisition process. Until now, the
strongest research findings have concluded that despite
early evidence of the analog magnitude system in infancy
(e.g., Xu & Spelke, 2000), this system plays no role in the
acquisition of the counting principles; instead, these
noisy number representations are said to be mapped
onto the verbal counting list only after children have
mastered cardinality (Le Corre & Carey, 2007). However,
by using a slight variation on the standard methods, we
found that children who had not yet mastered the prin-
ciple of cardinality do show a substantial influence of
analog magnitude representations in their mappings of
number words beyond their cardinality proficiency. This
finding supports prior arguments that this system could
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lay important foundations in the acquisition of the verbal
count list (Dehaene, 1997, 2001; Gallistel & Gelman, 1992,
2000; Gelman & Gallistel, 1978, 2004; Wynn, 1992,
1998).

While recent research has highlighted the importance of
the systems for parallel individuation and set-based
quantification for acquisition of the counting principles
(e.g., Carey, 2001, 2004; Carey & Sarnecka, 2006; Condry &
Spelke, 2008; Le Corre & Carey, 2007; Sarnecka, Kamens-
kaya, Yamana, Ogura, & Yudovina, 2007), the present work
argues for a role of the analog magnitude system as well
(see also Barth, 2008). Indeed, the confusability of the ana-
log representations may help explain the protracted course
of counting acquisition in early childhood. If, for example,
the analog magnitude representations are involved in the
child’s early representations of ‘three’ or ‘four’ and those
analog representations are highly overlapping, this could
present a major challenge for the child.

In addition, children with inherently greater precision
in their analog systems might be expected to acquire the
cardinality principle earlier and more easily, which may
in turn lead to advantages in later mathematical achieve-
ments. Indeed, Halberda and colleagues (Halberda,
Mazzocco, & Feigenson, 2008) recently found that an indi-
vidual’s skill with the approximate number system was
linked to skills in symbolic math, independent of other
cognitive and performance factors. Specifically, individual
differences in the precision of the analog system at age
14 were reliably correlated to standardized assessments
of symbolic mathematics measured from kindergarten
through sixth grade (Halberda et al., 2008).

Further, work with atypically-developing populations
also posits an important role for the analog magnitude
system in the acquisition of more complex numerical
concepts (e.g., Van Herwegen, Ansari, Xu, & Karmiloff-
Smith, 2008). Van Herwegen et al. (2008) looked at both
the object-tracking system and the analog magnitude
system in infants and toddlers with Williams syndrome
(WS), a condition associated with significant numerical
deficits spanning both verbal counting and non-verbal
representations of quantity in older WS individuals (e.g.,
Paterson, Girelli, Butterworth, & Karmiloff-Smith, 2006).
Infants with WS successfully differentiated between 2
and 3 objects but failed to detect the difference between
8 and 16. This pattern of success with the object-individ-
uation system and difficulty with the analog magnitude
system, combined with deficits with more advanced
Table A
Stimuli and scenarios used in Study 2.

Type of object Total
number

Scenario given

Plastic fish 30 ‘‘This is a pond (i.e., a plastic box) where thes
Strawberry

erasers
30 ‘‘Let’s go to the zoo and feed the animals (i.e., p

[animal] x strawberries?
Rubber balls 30 ‘‘Now that the animals have eaten, they want
Plastic frogs 30 ‘‘This is a lake where these frogs like to go sw
Gold coins 144 ‘‘We are going to go shopping for stickers. Ca
Plastic sharks 27 ‘‘This is the ocean where these sharks like to
numerical abilities led the authors to conclude that
‘‘. . .individual differences in large number processing in
infancy are more likely than small number processing
to be predictive of later development of numerical cogni-
tion’’ (Van Herwegen et al., 2008). The present studies
also argue for the role of individual differences in the
large number processing system (i.e., the analog magni-
tude system) as children are mastering more advanced
numerical concepts.

While the present studies find the strongest evidence
to date for the presence of analog magnitude representa-
tions in early mappings of large numbers in children’s
count list before the acquisition of the cardinality princi-
ple, future work will be useful in outlining how these
numerical skills interact. For example, intervention stud-
ies that train either analog skills (e.g., quantity discrimina-
tion and estimation) or verbal counting skills while
assessing the other can provide important insight into
the causal relations between these representational sys-
tems. With this work, researchers can move towards a
more coherent account of the representations underlying
acquisition of the counting principles and other mathe-
matical abilities.

Appendix A

The stimuli and scenarios used in Study 2 are described
in Table A.

Appendix B

Individual mean, standard deviation, and COV graphs
for the 2, 3, and 4-proficiency groups are shown in Fig. B.
Individual analyses for these groups are shown in
Table B. Due to the small n for proficiency level 1, this
group is not included.

Appendix C

Figs. C1–C3 show Study 2 analyses of mean, standard
deviation, and COV including trials where children re-
sponded with ‘‘all’’ items. These three graphs are parallel
to Figs. 5–7 and present findings from 28 children at profi-
ciency levels 1–4. The inclusion of ‘‘all’’ trials allowed for
the addition of four subjects who were otherwise elimi-
nated from analyses for insufficient trials at each of the
ten numbers requested.
e fish like to go swimming. Can you put x fish in the pond?’’
lastic boxes with pictures of different animals inside). Can you give the

to play. Can you give the [animal] x balls to play with?’’
imming. Can you put x frogs in the lake?’’

n you give me x coins for a new sticker?’’
go diving. Can you put x sharks in the water?’’



Fig. B. Performance in Study 2 by preschoolers at proficiency levels 2, 3, and 4. Graphs on the left illustrate average number of items given for numbers 1–
10. Graphs in the middle illustrate the standard deviation (SD) for responses given for numbers 1–10. Graphs on the right illustrate COV (SD/Mean) values.
Dotted lines represent mean response and SD at or below the proficiency level, p; solid lines represent values beyond p. When an analog magnitude system
is used for estimation, mean response and standard deviation should grow proportionally as the number estimated increases, resulting in a flat COV for
values beyond p.

Table B
Slopes for mean response, standard deviation (SD), and COV (SD/mean) for
values beyond proficiency level, p, for 2-, 3-, and 4-proficiency groups.

Slope t df p

2-proficient
Mean response 0.46 (0.73) 1.64 6.00 0.15
Standard deviation 0.26 (0.24) 2.83 6.00 0.03*

COV 0.02 (0.03) 1.52 6.00 0.42

3-proficient
Mean response 0.61 (0.69) 2.66 8.00 0.03*

Standard deviation 0.18 (0.40) 1.38 8.00 0.21
COV �0.004 (0.04) �0.31 8.00 0.76

4-proficient
Mean response 0.86 (0.96) 2.19 5.00 0.08
Standard deviation 0.12 (0.61) 0.48 5.00 0.65
COV �0.02 (0.04) �1.05 5.00 0.34

Note: These are the results of two-tailed one-sample t-tests of each slope
against 0. Slopes for Mean and SD are predicted to be positive and sig-
nificantly different from 0, while slopes for COV are predicted to be no
different from 0.
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Fig. C1. Mean number of items given beyond a child’s proficiency level
for requests of 3–10 items. The average slope of the mean response for
items beyond a child’s proficiency level is 0.59 (0.95) and significantly
different from 0, t(27) = 3.285, p = .003. This finding is consistent with
that reported in Fig. 5.
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Fig. C3. Coefficient of variation values collapsed across proficiency levels
(p) of 1, 2, 3, and 4 for values from p � 3 through p + 6. The COV values
beyond p show a slope no different from 0, M = �.006, SD = .05,
t(27) = �.633, p = 0.5. This finding is consistent with that reported in
Fig. 7.
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Fig. C2. Standard deviation of responses given beyond a child’s profi-
ciency level for requests of 3–10 items. The average slope of the mean
response for items beyond a child’s proficiency level is 0.07 (0.61), a value
that is not significantly different from 0, t(27) = 0.62, p = 0.5. Although the
slopes reported here and in Fig. 6 are both greater than 0, when ‘‘all’’
responses are included, this value is no longer significantly different from
0.
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